Low-frequency neuromuscular depression is a consequence of a reduction in nerve terminal Ca2+ currents at mammalian motor nerve endings.

نویسنده

  • Eugene M Silinsky
چکیده

BACKGROUND The decline in voluntary muscle contraction during low-frequency nerve stimulation is used clinically to assess the type and degree of neuromuscular block. The mechanism underlying this depression is unknown. METHODS Simultaneous electrophysiological measurements of neurotransmitter release and prejunctional Ca currents were made at mouse neuromuscular junctions to evaluate the hypothesis that decreases in nerve terminal Ca currents are responsible for low-frequency depression. RESULTS Under conditions generally used to measure Ca currents at the neuromuscular junction, increasing the frequency of nerve stimulation briefly from 0.017 to 0.1-1 Hz caused a simultaneous reduction in the release of the neurotransmitter acetylcholine to 52.2 ± 4.4% of control and the Ca current peak to 75.4 ± 2.0% of control (P < 0.001, n = 5 experiments for both measurements, mean ± SEM for all data). In conditions used for train-of-four monitoring (4 stimuli, 2 Hz), neurotransmitter release declined to 42.0 ± 1.0% of control and the Ca current peak declined to 75.8 ± 3.3% of control between the first and fourth stimulus (P < 0.001, n = 7 experiments for both measurements). Depression in acetylcholine release during train-of-four protocols also occurred in the absence of neuromuscular-blocking drugs. DISCUSSION The results demonstrate that neuromuscular depression during train-of-four monitoring is due to a decline in nerve terminal Ca currents, hence reducing the release of acetylcholine. As similar processes may come into play at higher stimulation frequencies, agents that antagonize the decline in Ca currents could be used to treat conditions in which neuromuscular depression can be debilitating.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Depression of developing neuromuscular synapses induced by repetitive postsynaptic depolarizations.

Effect of postsynaptic activity on the synaptic efficacy was studied in Xenopus nerve-muscle cultures. Repetitive postsynaptic depolarizations induced by injection of current pulses into singly innervated myocytes resulted in significant reduction in the frequency of spontaneous synaptic currents and the amplitude of nerve-evoked synaptic currents at the majority of synapses that showed immatur...

متن کامل

Effects of Odontobuthus Doriae Scorpion Venom on Mouse Sciatic Nerve

Temporary paralysis is a rare manifestation of envenoming following the yellow Iranian scorpion, Odontobuthus doriae (O. doriae). Thus, to elucidate the underlying mechanism, we investigated the neurotoxic effect of venom in the sciatic nerve, the possible mechanism in a mice model. The neurotoxicity and temperature effects in the venom-induced neurotoxicity were examined using the mouse sciati...

متن کامل

Effects of Odontobuthus Doriae Scorpion Venom on Mouse Sciatic Nerve

Temporary paralysis is a rare manifestation of envenoming following the yellow Iranian scorpion, Odontobuthus doriae (O. doriae). Thus, to elucidate the underlying mechanism, we investigated the neurotoxic effect of venom in the sciatic nerve, the possible mechanism in a mice model. The neurotoxicity and temperature effects in the venom-induced neurotoxicity were examined using the mouse sciati...

متن کامل

Acetylcholine-Induced Inhibition of Presynaptic Calcium Signals and Transmitter Release in the Frog Neuromuscular Junction

Acetylcholine (ACh), released from axonal terminals of motor neurons in neuromuscular junctions regulates the efficacy of neurotransmission through activation of presynaptic nicotinic and muscarinic autoreceptors. Receptor-mediated presynaptic regulation could reflect either direct action on exocytotic machinery or modulation of Ca2+ entry and resulting intra-terminal Ca2+ dynamics. We have mea...

متن کامل

Increased transmitter release and aberrant synapse morphology in a Drosophila calmodulin mutant.

The ubiquitous calcium-binding protein calmodulin (CaM) has been implicated in the development and function of the nervous system in a variety of eukaryotic organisms. We have generated mutations in the single Drosophila Calmodulin (Cam) gene and examined the effects of these mutations on behavior, synaptic transmission at the larval neuromuscular junction, and structure of the larval motor ner...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Anesthesiology

دوره 119 2  شماره 

صفحات  -

تاریخ انتشار 2013